An operator matrix element
The matrix element of the operator Aαβ is defined as & # x27E8; α | A ^ | β & # x27E9; {\displaystyle \langle \alpha |{\hat {A}}|\beta \rangle } . The above can be interpreted in two ways:
Vector scalar product & # x27E8; α | {\displaystyle \langle \alpha |} and vector A ^ | β & # x27E9; {\displaystyle {\hat {A}}|\beta \rangle }
The integral of all n parameters of rk from which vectors depend, ie:
& # x27E8; α | A ^ | β & # x27E9; = & # x222B; & # x2212; & # x221E; & # x221E; α ( r ¯ ) A ^ β ( r ¯ ) d n r {\displaystyle \langle \alpha |{\hat {A}}|\beta \rangle =\int \limits _{-\infty }^{\infty }\alpha ({\bar {r}}){\hat {A}}\beta ({\bar {r}})d^{n}r}
wiki
Comments
Post a Comment